En matemáticas, particularmente en teoría de números y álgebra abstracta, el teorema de Wilson es una proposición clásica vinculada con la divisibilidad y la primalidad de números enteros. A continuación, se presenta su enunciado:
|
La proposición recíproca también es verdadera, por lo que puede afirmarse que un número n> 1 es primo si y solo si (n− 1)! ≡ − 1 (mod n). Sin embargo, solo la implicación de arriba es conocida como teorema de Wilson (o Congruencia de Wilson). Por tanto, el teorema, probado su recíproco, proporciona una condición necesaria y suficiente para que el número entero sea primo.[1][2]